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where for the electron case: 

K 2 = (2m/h  2) [E+ V0] 

Uo= (Zm/h2) Vo , 

and for the X-ray case: 

K 2 = c-2[v 2 -- 4Z~Qoe2/mrc] (8) 

U9= - e2Qo/(rcmc2) . 

Since in the X-ray case 1"/is only very slightly greater than 
unity, D can replace e in (6) with negligible error. The 
solutions of (7), therefore, give the allowed values of the 
wave vector k for each Bloch wave excited in the crystal. 

shown above, however, manipulation of the Maxwell equa- 
tions gives a 'single photon Schr/Sdinger equation'  in which 
the potential energy term is the fraction of the photon 
energy stored in the polarized lattice. The Bloch wave 
solutions and dispersion relationships then follow because of 
the periodic electron density in the lattice. The mathematical 
formalism is, thus, somewhat simplified, and the analogy 
to electron diffraction by a periodic potential is made 
obvious. 

This work was supported by the National  Research Coun- 
cil of Canada under grant number A5030. 

Discussion 

The above treatment of dynamical theory gives explicitly 
the close relation between X-ray and electron scattering by 
crystals and shows in detail why the dispersion equations 
for the two phenomena have a similar form. The usual 
treatment of X-ray dynamical theory, following Laue (1931) 
and James (1958) assumes that the 'polarizibility', (1 - 1/q), 
is a periodic function of the lattice and then Bloch wave 
solutions are inserted into the basic Maxwell equations. As 
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Comments are made on papers by Cerrini, Cruickshank and Scheringer on representations of the harmonic 
vibration tensor U with respect to different bases. 

The paper by Cerrini (1971) on anisotropic harmonic 
vibrations in affine (triclinic) coordinate systems is very 
helpful in clarifying my paper (Cruickshank, 1956) and its 
relation to the apparently contradictory analysis of 
Scheringer (1966). The 1956 paper was less explicit than it 
should have been, and it would have been much better if it 
had used, as Cerrini has used, the upper- and lower-suffix 
notat ion for contravariant and covariant tensor compo- 
nents. The attempt in 1956 to keep the notation simple has 
led to some confusion, and an indication now of what 
should have been added to the 1956 paper and of its rela- 
tion to a 1961 paper may be helpful. 

Cerrini uses the following symbols for base axes: 
at ( i= 1,2,3) are the direct axes, and a t are the corre- 
sponding reciprocal axes (at .  a J = 3{). These are called the 
frame (at, at), and (e,  e t) is the frame for which et are unit 
vectors parallel to at; the e t are parallel to a t, but are not of 
unit length for general triclinic direct axes. ( f ,  f9  is the 
frame for which ft are unit vectors parallel to ai; the ft are 
parallel to at, but are not of unit length for general triclinic 
direct axes. Sets et, e t, ft, ft are identical and of unit lengths 
only when al (hence also a t) are an orthogonal set. [The 
reader should beware of the misprint in the third line of the 
third paragraph of Cerrini's ' Introduction'  where the direct 
axes are printed a t in error for al. A misprint also occurs in 
the middle of the left-hand column of p. 132 where 
U,(cos 01) 2 should read U"(cos 0l)2.] 

A confusion in notat ion that can occur is that the symbol 
x may be used to denote either a vector or a set of vector 
components. Of itself, the vector has no algebraic form, but 
when a frame (a ,  a t) is defined, we write 

X = x~al + x2a2 + x383 

= x l a  1 + x2 a2 -~ x3 a3. 

The point to be watched comes if the component array 
(x~,x2,x 3) is called x. In tensor language both (x~,x2,x 3) 
and (xl, x2, x3), together with an infinity of arrays for other 
frames, are all representations of  the vector x. Similarly, 
symbol U, according to context, may denote either the 
vibration tensor U or one of the 3 x 3 matrix arrays U tj 
and Utj, which are the contravariant and covariant repre- 
sentations of the tensor with respect to the frame (a ,  at). 

Cerrini's discussion shows that in equations (1.5)-(1.7) 
and the Appendix of my 1956 paper symbols x and U are 
the contravariant arrays x t and U t j, and the 1956 symbols 
'xt' and 'Utj' are also these contravariant arrays, while the 
symbols s and st are the covariant array st. The 1956 symbol 
U-~ is Cerrini's covariant array Vtj. With these interpreta- 
tions, equations (1.5)-(1.7) and the Appendix are true for 
any frame (a ,  at). 

In equations (2.1) and (2.2), a particular choice of recip- 
rocal base is implicit in the exponential term 

exp [ -  2rcZ(h2a*Z'Uu'+ ...)] . 
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This is Cerrini's reciprocal base f*, which has axes of unit 
length parallel to the crystal reciprocal axes. Further, as 
Cerrini shows, 'U xl', which is U it in tensor notation, is the 
mean-square displacement in the direction fk  

However, for non-orthogonal axes the corresponding 
direct axes ft are not of unit length. It was for this reason 
that additional formulae for computational purposes were 
given by Cruickshank, Pilling, Bujosa, Lovell & Truter 
(1961). In the computational scheme it was desired to out- 
put coordinates in .~ and vibration mean-square amplitudes 
in A 2. With the A as the unit of length, the 1961 symbol Xc 
denoted the A coordinate array x t with respect to Cerrini's 
frame (e,  el), while Uc denoted the A. 2 vibration array U IJ 
with respect to the frame (fi, ft). In general, et and ft are not 
a dual-base pair and, consequently, corresponding to a 
coordinate transformation to standard orthogonal axes S: 

Xs = Bxc , [1961, (4.4)] 

the vibration transformation, has the unusual form 

Us = (BD)Uc(BD)', [1961, (4.5)] 

rather than one of the type BUcB', appropriate to dual 
bases. Here D is a diagonal matrix with diagonal elements 
ata t, where at and a t are the lengths of the axes. 

Scheringer's (1966) criticism of the 1956 paper is valid, if 
symbols x and U of that paper are interpreted as the sym- 
bols Xc and Uc of the 1961 paper. (Scheringer intended his 
criticism to apply only in this case.) With such an inter- 
pretation, though (1.7) retains U, equation (1.6) must involve 
DUD in place of U, and some corresponding changes are 
needed in the Appendix. However, as shown by Cerrini's 
discussion summarized above, such an interpretation of 
the 1956 paper is not necessary, and the paper is in order 

provided x and U are defined with respect to the same 
frame. 

Scheringer also stated that equation (4.5) of the 1961 
paper ought to have appeared as now given above and not as 

Us = (DB)Uc(DB)' 

which was printed originally. This criticism is correct and is 
not affected by Cerrini's analysis. I regret the error, which 
was due to carelessness in matrix manipulation and not to 
any confusion between representations. With the particular 
choice (4.1) of standard orthogonal axes S in the 1961 
paper, the error in fact affects only triclinic and not mono- 
clinic calculations (for which the formula had been cross- 
checked). It should be added that the 1961 symbol Uc, 
which represents the contravariant array U tJ for the frame 
(f,,ft), corresponds to Scheringer's UR and not to his Uc, 
which is the contravariant array U ~J for the frame (e,e~). 

In my paper (Cruickshank, 1970) on the least-squares 
refinement of atomic parameters, vibration parameters are 
written in the contravariant style U iJ and are defined with 
respect to a frame there called (et, ei), but which is (ft, f ~) in 
Cerrini's notation. 
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The X-ray diffuse scattering from pentaerythritol is measured at various temperatures. By taking account of 
five intermolecular force parameters, the dispersion relations are calculated and compared with the observed 
data. It is found that the interaction between the oxygen atoms connected by the hydrogen bond is stronger 
and more sensitive to temperature than other interactions. 

In order to elucidate the nature of hydrogen bonds in 
pentaerythritol, C(CHzOHh, the intensity distribution and 
temperature dependence of the X-ray diffuse scattering from 
this substance were studied. The specimen crystal was a rod 
which was cut out from a single crystal grown by the subli- 
mation method, and was set in a small glass cryostat with 
a Mylar window. The temperature was indicated by a 
Cu-CuNi  thermocouple placed at the top of the specimen 
and was controlled automatically to within +0.1 °K. A 
parallel narrow beam of Mo K0c radiation monochromated 
by a graphite crystal was used. 

The intensity distributions of the X-ray diffuse scattering 
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in the vicinity of the 002 and 200 reflexions about the [010] 
axis of rotation were observed, and five dispersion relations 
for the principal axes were obtained. The intensities of  
scattered X-rays were normalized by referring to the dif- 
fuse scattering from paraffin (Amor6s & Amor6s, 1968). In 
Fig. 1, typical dispersion curves of the transverse acoustic 
(TA) and longitudinal acoustic (LA) phonons polarized in 
the [001] direction are shown, where the small triangles 
indicate the estimated angular resolutions for the different 
directions. The temperature dependence of the intensities 
of the diffuse scattering near the 200 reflexion are plotted in 
Fig. 2. Both the intensities at 1.8,0,0 and 2,0,0.2 increase 
linearly with temperature. The fluctuation of intensities in 
the temperature range above 350°K seems to be due to de- 
composition of the crystal. The intensity at 1"8,0,0 which 


